

INDIAN SOCIETY OF ANAESTHESIOLOGISTS (ISA) MECHANICAL VENTILATION MODULE (BASIC)

Orientation Course for Clinical Specialists & Refresher Course for Anaesthesiologists

Weaning from Mechanical Ventilation

Weaning from Mechanical Ventilation

For Delivering the best possible care to patients on mechanical ventilation

Take patients off mechanical ventilation as soon as it is safely possible

Course during Mechanical Ventilation

- Treat acute respiratory failure
- Suspect readiness to wean
- Asses readiness to wean
- Wean from Ventilator
- Extubation

Weaning from Mechanical ventilation

• First step

The weaning process starts at the time that the illness that lead to the need of mechanical ventilation has (at least partially) resolved

Weaning from Mechanical ventilation

• Second step

Readiness to wean should be suspected early in the course of mechanical ventilation and assessed by objective criteria

Readiness to wean criteria

- Satisfactory oxygenation:
 PaO2/FiO2 > 200 mmHg with PEEP < 5cm H2O
- Hemodynamic stability : no continuous or minimum vasopressor infusion
- Adequate level of consciousness: Patient awake or easily aroused

Readiness to wean criteria

- Adequate cough and secretion management: Patient should be able to cough effectively Presence of cough reflex in response to endotracheal suction
- Respiratory Physiology criterion
 Rapid shallow breathing index RSBI <100 after 2 minutes of a spontaneous breathing trial

Rapid shallow breathing index

- RSBSI is sensitive screening test for early detection of readiness to wean
- The RSBI index is the ratio of respiratory rate to TV (Tidal Volume) after 2 minutes of SBT
- RSBI identify patients who can pass SBT
- This does not identify those who actually pass SBT

Rapid Shallow Breathing Index

- The breathing pattern in respiratory failure is characterized by:
- Low Tidal volumes (shallowness) &
- High respiratory rate (rapidity)
- Examples:

RR = 40, Vt = 200 ml
 RSBI = 40/.2 = 200; Failed test

Success<105>Failure

Weaning from Mechanical ventilation

• Third Step

Spontaneous Breathing Trial (SBT)

- Once the readiness to wean is confirmed with above mentioned criteria, an SBT should be conducted
- SBT is required to confirm the patients ability to breathe without assistance

Spontaneous Breathing Trial

- SBT with T piece assistance
- SBT with low level of inspiratory pressure support or CPAP
- SBT should be performed using the T-piece method which most accurately simulates the post- extubation physiological conditions

Duration of SBT

• 30 minutes of SBT Trial

This is adequate in identifying a successful or failed SBT

Longer up to 120 Minutes Trial

May be required in high risk patients as Elderly patients and those with COPD ,heart faliure ,or neuromuscular Disease

Criteria for successful SBT

- Respiratory rate < 35
- Good tolerance to spontaneous breathing trial
- Heart rare <140 or HR variability of <20%
- SPO2 >90 or PaO2 >60 mmHg on FiO2 <0.4
- Systolic Blood pressure >80 and <180 or <20% change from baseline
- No sign of increased work of breathing or distress

Sign of increased work of breathing or distress during SBT

- Accessory muscle use
- Paradoxical or asynchronous rib abdominal cage movements
- Intercostal retractions
- Nasal flaring
- Profuse diaphoresis
- Agitation

Criteria of failure of SBT

- Clinical Criteria
- Diaphoresis
- Nasal flaring
- Increased respiratory efforts
- Tachycardia (increased in Heart rate >40)
- Cardiac arrhythmias
- Hypotension
- Apnea

Criteria of failure of SBT

- Gas exchange criteria
- Increase of PCO2 >10 mm of Hg
- Decrease in arterial pH <7.32
- Decline in arterial pH>0.07
- PaO2 <60 with an FiO2 >.40 (PaO2/FiO2 <150)
- Fall in SpO2 >5%

Fourth Step Extubation readiness:

- Extubation should be considered if patients meet the following criteria
- Breathing spontaneously
- ➢ RASS 0 to −1
- > Able to follow commands
- Intact cough and able to protect airway
- Requiring airway suctioning for secretion < q2h</p>

Extubation readiness:

• Other considerations include:

FiO2 < 40% at the time of extubation
 Optimization of volume status prior to extubation

ICU Extubation

- Confirm patient meets criteria for extubation
- Don appropriate PPE
- Minimize staff: Only respiratory therapist and/or provider should be in the room
- Place patient on 1.0 FiO2 on the ventilator and ensure non-rebreather mask ready with flow "OFF"
- Place bed pad or towel on patient chest and ensure yankauer suction "ON" and readily available. Consider placing a plastic drape on top of patient to prevent exposure to any coughing that may occur.
- Secure NGT or feeding tube to nose.

ICU Extubation

- Suction mouth and loosen tape securing ETT to patient
- Turn all gas flows to "OFF" (may still have some O2 flow as safety mechanism for most machines) and extubate the patient
- Immediately discard of ETT, chuck or towel, and drape
- Immediately place non-rebreather on patient, then turn oxygen flow to 10-15L/min. Ensure patient is oxygenating and ventilating
- All providers will sanitize/change gloves while maintaining base layer PPE. Do not allow anyone into the room for at least 47 minutes after extubation to facilitate 99% of aerosolized virus removal by negative pressure room (assumes ACH of 6/hr)

Weaning and Ventilatory strategy if patients fails SBT

- Restart ventilation to provide Near total rest
 - Assist-control ventilation (volume or pressure targeted)
 - Daily SBT for discontinuation assessment
 OR
- Partial ventilatory support
 - PSV
 - Gradual withdrawal possible
 - Prevents prolonged muscle inactivity
- Non-invasive ventilation or HFNCO2 after extubation in those at risk of weaning failure

Underlying condition has Resolved or improved

Factors that can prolong weaning

Decreased Drive	Muscle weakness	Impaired N-M transmission
Drug overdose	Electrolyte derangement	Critical illness neuropathy
Brain-stem lesion	Malnutrition	N-m blockers
Sleep deprivation	Myopathy	Aminoglycosides
Hypothyroidism	Hyperinflation	GB syndrome
Starvation / malnutrition	Drugs, steroids	Myaesthenia
Metabolic alkalosis	Sepsis	Phrenic nerve injury
		Spinal cord lesion

